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The characteristics of the central recirculation zone and the induced instability waves of a swirling
flow in a cylindrical chamber with a slip head end have been numerically investigated using the
Galerkin finite element method. The effects of Reynolds number as well as swirl level adjusted by
the injection angle were examined systematically. The results indicate that at a high swirl level the
flow is characterized by an axisymmetric central recirculation zone (CRZ). The fluid in the CRZ
takes on a solid-body rotation driven by the outer main flow through a free shear layer. Both the
solid-body rotating central flow and the free shear layer provide the potential for the development of
instability waves. When the injection angle increases beyond a critical value, the basic axisymmetric
flow loses stability, and instability waves develop. In the range of Reynolds numbers considered in
this study, three kinds of instability were identified: inertial waves in the central flow, and azimuthal
and longitudinal Kelvin-Helmholtz waves in the free shear layer. These three types of waves interact
with each other and mix together. The mode selection of the azimuthal waves depends strongly on
the injection angle, through the perimeter of the free shear layer. Compared with the injection angle,
the Reynolds number plays a minor role in mode selection. The flow topologies and characteristics
of different flow states are analyzed in detail, and the dependence of flow states on the injection angle
and Reynolds number is summarized. Finally, a linear analysis of azimuthal instabilities is carried
out; it confirms the mode selection mechanisms demonstrated by the numerical simulation. Published
by AIP Publishing. https://doi.org/10.1063/1.5000967

I. INTRODUCTION

One characteristic of the swirling flow is the formation
of a central recirculation zone (referred to here as CRZ)
downstream of the swirling vanes, which plays an impor-
tant role in combustion devices to improve flame stabilization
and enhance mixing of fuels and oxidizers.1–3 The CRZ can
be created by several methods in swirling systems, includ-
ing strengthening swirl at the flow entrance, applying sudden
expansion on the sidewalls, and placing a central bluff body
on the axis. In most devices, one or more of these methods is
used jointly for optimal control of flow and flame behaviors.
Although considerable efforts have been made in this area in
past decades, the mechanisms and flow characteristics of the
CRZ are still poorly understood, even for a simple flow in a
cylindrical chamber. The difficulties generally lie in the com-
plexity of the coupling of various mechanisms, subject to a
broad range of flow parameters.

When fluid is injected into a cylindrical chamber with such
a high swirl level that the centrifugal effect dominates over
other effects, the centrifugal force drives the fluid outward
to the sidewalls and creates an axisymmetric bubble-like or
column-like “cavity” on the axis. This “cavity” is the simplest
CRZ and is commonly observed in many swirling devices.4–7

Previous studies have found that this kind of CRZ only occurs
when the swirl number [refer to Eq. (7)] exceeds a critical
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value Scrit .1,2 Gupta et al.2 showed that Scrit is about 0.6 for
the flow in a cylindrical chamber. This conclusion provides an
important criterion for the occurrence of the CRZ.

Experimental measurements1–3,8 have shown that the
axisymmetric CRZ driven by the centrifugal force at a high
swirl level is enveloped by a free shear layer, across which
the tangential and axial velocities change significantly. This
layer, with its sharp velocity gradient, provides the potential
for shear instability to develop. As the basic state loses stabil-
ity, the axisymmetric flow structure breaks up into a periodic
wave-like pattern aligned in the azimuthal and axial directions.
This inspires us to ask whether the instability waves and the
mechanisms of mode selection provide the links connecting
different flow states.

The earliest study of the instability of the free shear layer
in the swirling flow is by Hide and Titman.9 They dealt with
the free shear layer (called the “detached shear layer” in their
paper) created by a rotating disk placed in a cylindrical con-
tainer with different rotation speed. In their experiments, the
flow consists of a free shear layer, which is fundamentally a
Stewartson layer together with an Ekman boundary layer on
the rotating disk.10,11 Their results show that the flow pattern
is determined by both Rossby number

Ro ≡
(Ω1 −Ω0)

(Ω1 +Ω0)/2
(1)

and Ekman number

E ≡
2ν

R2 (Ω1 +Ω0)
, (2)
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where Ω0 and Ω1 are the angular velocities of the cylindrical
container and the rotating disk, R is the radius of the disk, and
ν is the kinematic viscosity of fluid. When the Rossby number
is below a critical value, the flow exhibits axisymmetric char-
acteristics. Otherwise, when the Rossby number exceeds the
critical value, a wave-like non-axisymmetric pattern appears
and the wave number decreases with the amplitude of the
difference in rotation speed. Rabaud and Couder12 pointed
out that the wave phenomena observed in the experiments of
Hide and Titman9 are not a simple Kelvin-Helmholtz insta-
bility; the centrifugal force and the Coriolis force also play
non-negligible roles. According to the theory of Niino and
Misawa,13 the stability of the Stewartson layer is determined
by the Reynolds number, defined based on the velocity dif-
ference across the free shear layer and the thickness of
the Stewartson E1/4-layer. They find that the wave number
decreases with increasing Reynolds number, which is opposite
to the common analysis that the most unstable wave num-
ber increases with the Reynolds number. This conclusion was
confirmed by Konijnenberg et al.,14 who performed experi-
ments on the free shear layer created in a parabolic vessel with
a differentially rotating central section. Their observation is
in agreement with the relationship between the wave number
and Reynolds number obtained by many other researchers for
different flow conditions.15,16

The free shear layers in the previously mentioned stud-
ies were created by the rotation of one or two solid disks and
were connected with the Ekman layer on the rotating disks.
In contrast to these studies, the free shear layer in a cylindri-
cal chamber is created by tangentially injected fluid, and the
flow parameters related to the free shear layer, such as the
layer thickness and the angular velocities inside and outside
the layer, are not well defined.

In most swirling devices with injection ports on the sides,
a stationary solid plate is placed at the head end of the chamber.
In the boundary layer formed on the end surface, the azimuthal
velocity of the flow is reduced due to viscous dissipation, and
the equilibrium between the radial pressure gradient and the
centrifugal force is broken. The excessive pressure gradient
drives the fluid in the boundary layer to the axis and gives rise
to a jet-like flow on the axis. The interaction with this jet flow
causes the CRZ and instability waves to behave distinctively
and develop some complicated nonlinear phenomena.

As the first step in a series of studies to fully understand
the physics of CRZs and the instability waves developed in
the swirling flow, and to understand the connections between
the different flow states over a variety of swirl levels and
Reynolds numbers, we initiate this exploration into the behav-
iors of CRZ and the instability waves in a cylindrical vortex
chamber with a slip head end. The purpose of eliminating
the friction on the end surface is to identify the centrifugal
effect and examine the flow and instability characteristics in the
absence of the boundary flow due to friction on the head end.
When the slip head end is considered as the symmetry plane,
the flow is identical to that injected into a cylindrical cham-
ber through an annular entrance located halfway along the
cylinder.

In this paper, we present a numerical model to simulate
the swirling flow in a cylindrical chamber with a slip head end.

A flow is injected into the cylinder through an annular entrance
on the sidewall near the head end. A flow swirl is introduced
aerodynamically by controlling the injection flow angle. The
overall objectives of the present study are multiple. The first
is to systematically investigate the flow features of the CRZ
driven by the centrifugal force and the characteristics of the
instability waves developing in the free shear layer enveloping
the CRZ, and to offer insight into the mechanisms governing
the flow evolution. The second is to establish the connections
between different states in a broad range of swirl numbers
and Reynolds numbers. This paper is organized as follows.
In Sec. II, detailed descriptions of the physical models are
presented. In Sec. III, the numerical model and approaches
are described. The results are discussed in Sec. IV. Section V
offers conclusions.

II. PHYSICAL MODEL

In order to avoid the complexity caused by device con-
figuration, we adopt a highly simplified swirl geometry, with
dynamics similar to those of the above-mentioned studies. As
shown in Fig. 1, the present geometry includes a long cylin-
drical chamber of diameter D with an annular entrance on the
side at the head end. The width of the entrance is denoted by d.
Fluid is injected into the chamber through the entrance with
uniform radial velocity Ur,in and tangential velocity Uθ,in. The
injection angle is defined as the angle between the injection
velocity vector and the tangent of the cylindrical chamber,
θin = tan�1(Ur,in/Uθ,in). The radial velocity component can
be acquired from Uθ,in and θin. Thus, a complete description
of the swirling flow in the cylinder includes D, d, θin, Uθ,in,
and ν, where ν is the kinematic viscosity of the fluid in the
chamber.

In most studies, the Reynolds number is defined based on
the mean axial velocity in the cylinder as Rex = ūxD/ν, where
ūx is the mean axial velocity and D is the chamber diameter. In
the present study, however, the swirl effects are closely related
to the tangential velocity at the entrance, so we choose the
injection tangential velocity Uθ,in and the cylinder diameter D
as the characteristic variables and define the Reynolds number
as

Reθ =
Uθ,inD

ν
. (3)

The relationship between this tangential Reynolds number and
the conventional Reynolds number based on the mean axial
velocity is

Rex =
4d
D

tan θin · Reθ . (4)

FIG. 1. Configuration: cylindrical container with an annular entry.
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Here, we consider only the laminar flow with Reθ ranging from
100 to 3000. In the simulation, the velocity and length scales
are normalized with the tangential velocity of the injection
flow Uθ,in and the radius of the cylindrical chamber R. In the
nondimensional form, Uθ,in = 1 and D = 2. The controlling
parameters for the present configuration reduce to d, θin, and
Reθ . The angular momentum carried by a unit volume of fluid
at the entrance is

M = Uθ,inD/2 = 1. (5)

The volumetric flow rate injected into the chamber is

V̇ = Uθ,in tan θin · πDd = 2πd tan θin. (6)

The immediate consequence of increasing the injection angle
θin is an increase in the volume flow rate and the angular
momentum flux into the chamber. The swirl level, character-
ized by the swirl number, is defined as

S =

∫
A
ρuθr · uxdA

D/2 ·
∫

A
ρux · uxdA

, (7)

where ρ is the fluid density, uθ is the azimuthal velocity, ux

is the axial velocity, and A is the cross-sectional area at any
axial location of the cylinder. The swirl number S is a nondi-
mensional number representing the ratio of the axial flux of
angular momentum to the axial flux of axial momentum. For
the present configuration, fluid is injected into the chamber
with zero axial velocity, so we need to define an equivalent
swirl number to avoid dividing by the zero axial velocity in
estimating the swirl number of the injected flow. An approx-
imate method is to employ the averaged axial velocity ūx

obtained from the volume flow rate injected into the chamber
and assume that the angular momentum is perfectly conserved.
The swirl number of the injected flow is then

Sin =
R
2d

1
tan θin

, (8)

where R = 1 in the nondimensional form. This expression
implies that for a given geometry the injection swirl number
Sin is inversely proportional to the tangent of injection angle
θin. The increasing injection angle θin will lead to the decrease
in swirl level of the injection flow. This is because, although
the increase in θin increases the axial fluxes of both angular
momentum and axial momentum, the ratio of these two fluxes
decreases. This conclusion is only valid for the injected flow in
a limited upstream regime because viscous dissipation tends
to decrease the flow swirl, and the variation of swirl number
also depends on the specific flow characteristics. In this study,
the nondimensional entrance width d is fixed at 0.2. The swirl
numbers of the injected flow at various angles considered in
this study are listed in Table I.

TABLE I. Swirl number of the injected flow with various vane angles.

θin (deg) 10 20 30 45 55 60 75
Sin 14.18 6.87 4.33 2.50 1.75 1.44 0.67

III. GOVERNING EQUATIONS AND NUMERICAL
METHODS

Under the assumption that the flow is laminar, three-
dimensional, and incompressible, the non-dimensional con-
versation equations based on the tangential velocity of injec-
tion flow Uθ,in and chamber radius R can be written as

∇ · u = 0, (9)

∂u
∂t

+ u · ∇u = −∇p +
2

Reθ
∇2u, (10)

where Reθ is the Reynolds number defined by Eq. (3), u
is the velocity vector, and p is the nondimensional pressure
(p ≡ p̃/ρU2

θ,in, p̃ is the pressure with units). A slip condition
is used on the head end, a non-slip condition is used on the
sidewall, and an out-flow condition is used at the downstream
end of the chamber. At the annular entrance, the inlet condition
is specified as

uθ = Uθ,in = 1, (11)

ur = Ur,in = Uθ,in tan θin. (12)

In this paper, a finite element solution for a three-
dimensional incompressible viscous flow is considered. Dis-
cretization in space is carried out by the Galerkin weighted
residual method.17 For time advancement, the velocity correc-
tion method (explicit forward Euler), given in detail by Kovacs
and Kawahara,18 is employed. The method gives results of the
second order of accuracy in both time and space.

In the simulations, the axial length of the computational
domain is 30 times as long as the cylinder radius. For a laminar
flow, this length is long enough to make the influence on the
interior flow from the downstream boundary negligible.

In order to check the grid sensitivity of the numerical
results, two flows with injection angle θin = 10◦ and 45◦ at
Reθ = 1000 were simulated with three grid systems: fine grid
4205 × 150 (cross section × axis), medium grid 1125 × 75,
and coarse grid 245 × 75. The profiles of azimuthal and radial
velocities on the slip head end with different grid resolutions
are shown in Fig. 2. At θin = 45◦, flow instability appears, and
the azimuthally averaged velocity components are shown in the
figure. A comparison of the curves shows that for azimuthal
velocity uθ , the largest deviation occurs at the outer and inner
boundaries of the free shear layer, where uθ changes abruptly.
For radial velocity ur , the deviation primarily appears in the
central region. Please refer to Sec. IV for a detailed discus-
sion of the flow patterns. These curves demonstrate excellent
convergence as the grid resolution improves from the medium
grid to fine grid. In our simulation, the fine grid is used for
all cases with Reθ ≤ 1000, to support the accuracy of the
numerical results. For Reθ > 1000, an extra fine grid 6125
× 150 is adopted. Under different conditions, the distribution
of grid nodes is adjusted according to the gradients of flow
quantities.

The velocities of a flow with uniform axial velocity and
zero azimuthal velocity are used as the initial conditions. Over
time, the flow gradually enters a quasi-steady state in which
all variables change periodically with time. Our analysis is
conducted in the quasi-steady state.

The details of the numerical method with validation tests
can be found in the studies of Wang et al.19,20
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FIG. 2. Effect of grid resolution on azimuthal and radial velocity on the slip
head end at Reθ = 1000. The azimuthally averaged uθ is shown. (a) Azimuthal
velocity and (b) radial velocity.

IV. RESULTS AND DISCUSSION

For a given configuration, the flow evolution in the cham-
ber is determined by the injection swirl number Sin and
tangential Reynolds number Reθ . In the following analysis,

the axisymmetric basic flow without instability wave will be
discussed first. This kind of flow typically occurs at high swirl
levels and low Reynolds numbers. After that, the instability
waves in the free shear layer at low swirl levels will be dis-
cussed. Overall, the injection angle θin increases from 10◦ to
75◦. Correspondingly, the injection swirl number Sin decreases
from 14.18 down to 0.67 (Table I). The azimuthal Reynolds
number Reθ ranges from 100 to 3000, and the analysis is
limited to the laminar flow range.

A. Axisymmetric columnar central recirculation zone
at high swirl level and low Reynolds number

At a high swirl level, the centrifugal effect is dominant
over the other effects, and the flow is characterized by an
axisymmetric column-like or bubble-like recirculation zone
on the axis. When fluid is injected into the chamber, the strong
centrifugal force drives the fluid outward and forces it to travel
along the sidewall in a spiral path downstream. This flow
motion creates an axisymmetric cylindrical recirculation zone
on the axis when the Reynolds number is not too small. Such
recirculation zone is referred to as the “central recirculation
zone” (CRZ). It can be easily seen that the motion of fluid
in the CRZ is driven by the outer downstream traveling flow
newly injected into the chamber. We use a flow at θin = 20◦

and Reθ = 300 as an example to demonstrate the basic flow
patterns in Fig. 3.

Figures 3(a) and 3(b) show the typical three-dimensional
streamlines of the central recirculating flow and the outer main
flow, respectively. In the quasi-steady state, the streamlines
coincide with the trajectories of fluid particles. As shown in
these two figures, both the outer and central flows travel in
a spiral manner, as is commonly observed in swirl devices.
The CRZ can be clearly identified in Fig. 3(c), which shows
the projected streamlines on the central plane along the axis.
When the Reynolds number is not too high, the flow stays
stable to azimuthal disturbances and the flow patterns remain
axisymmetric. The streamlines in the CRZ are closed and only
recirculate within the central region.

FIG. 3. Overview of swirling flow with
columnar CRZ in a cylindrical chamber
with the slip head end at θ in = 20◦ and
Reθ = 300. (a) Typical streamlines in the
CRZ; (b) typical streamlines outside the
CRZ; (c) projected streamlines on the
x-y plane; (d) contours of axial veloc-
ity ux on the x-y plane; (e) contours of
azimuthal velocity uθ on the x-y plane;
(f) contours of vorticity magnitude |ω|
on the x-y plane.



013602-5 Y. Wang and V. Yang Phys. Fluids 30, 013602 (2018)

FIG. 4. Profiles of azimuthal and radial
velocity components and pressure on the
slip head end at θ in = 20◦ and Reθ = 300.

The contours of axial and azimuthal velocities on the cen-
tral plane are shown in Figs. 3(d) and 3(e). Both velocity
components reach their maxima in the outer downstream-
traveling flow. In the contours of vorticity magnitude shown in
Fig. 3(f), a free shear layer with a concentrated vorticity mag-
nitude can be observed at the interface of the outer and central
flows. In the three-dimensional pattern, this layer shows up as
a cylindrical structure. The presence of this free shear layer,
as well as the distributions of axial and azimuthal velocities,
suggests that the motion of the central recirculating flow is
driven by the outer downstream traveling flow by means of
shear stress.

The interactions between the outer and central flows are
examined through the profiles of velocity components and
pressure on the slip head end shown in Fig. 4. The distribu-
tion of the azimuthal velocity uθ implies that the flow near the
head end can be decomposed into three consecutive regimes
along the radius. The outer regime is occupied by the flow
that has just entered the chamber, and the angular momen-
tum is well conserved, and the change of azimuthal velocity
satisfies uθr = Uθ,inR = 1. Therefore, the outer layer can be
considered as a potential flow regime before the friction on
the sidewalls takes effect downstream. In the central regime
occupied by the central recirculating flow, the azimuthal veloc-
ity exhibits linear dependence on the radial coordinate, which
means that the flow in the central regime takes on a solid-body
rotation.

The azimuthal velocity decreases sharply between the
outer and central regimes, from the outer potential flow to
the central solid-body rotating flow. A free shear layer exists
between the outer and central flows, indicating that the motion
of the CRZ is driven by the outer main flow by means of shear
stress. The radial velocity ur shows a monotonic decrease in
magnitude from the entrance to the separation point where
ur = 0. The separation point is located in the free shear layer.
It should be noted that the magnitude of radial velocity of the
CRZ is much smaller than that of the outer flow. This implies
that the passive motion of the central recirculating flow is not
as strong as the outer flow. In the swirling flow, the centrifugal
force is roughly balanced by the radial pressure gradient. In
this figure, the sharp decrease in pressure outside the CRZ con-
firms that the swirl motion of the outer flow is much stronger
than the central solid-body rotation.

The profiles of azimuthal and axial velocities at differ-
ent axial locations are given in Figs. 5(a) and 5(b). A sharp
decrease in the azimuthal velocity takes place between the
outer potential flow and the central solid-body rotating flow at

x = 0, which indicates the presence of the free shear layer.
However, at x = LCRZ /2, where LCRZ is the length of the
CRZ, this sharp decrease in uθ can no longer be seen on
the curve. This is because the free shear layer is created
in the upstream region and only extends a limited distance
downstream because of viscous dissipation. The free shear
layer provides the environment for the development of Kelvin-
Helmholtz instability waves in the azimuthal and longitudinal
directions in the upstream region. Comparing the uθ profiles
at x = 0 and x = LCRZ /2, the slope of the curve in the cen-
tral regime at x = LCRZ /2 is bigger than that at x = 0, which
means that the CRZ swirls faster in the downstream section.
This is consistent with the contours of uθ shown in Fig. 3(e);
in the process of traveling downstream, the outer main flow
continuously transfers angular momentum to the CRZ until a
balance point is reached. As a result, the CRZ rotates faster
in the downstream region. According to the criterion for iner-
tial waves,21 the solid-body rotation of the CRZ provides the
potential for the development of inertial waves in the central
region. We will discuss this issue in Sec. IV B of this paper.
Due to viscous dissipation, the swirl strength decreases as the
flow moves downstream. At x = 2LCRZ , the swirl is almost
fully dissipated.

The axial velocity vanishes on the axis at the downstream
end of the CRZ. Inside the CRZ, ux < 0 along the axis. At
each axial location, the axial velocity reaches a peak in the
outer main flow. As the outer flow travels downstream, the
peak eventually shifts toward the axis. At about x = 2LCRZ , the

FIG. 5. Profiles of (a) azimuthal and (b) axial velocity components at x/LCRZ
= 0, 0.5, 1, 1.5, and 2 and (c) axial variation of swirl number at θ in = 20◦ and
Reθ = 300.
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FIG. 6. Profiles of CRZ on the x-y plane at different injection angles and
Reynolds numbers: (a) θ in = 20◦ and (b) Reθ = 300.

axial velocity peak arrives at the axis. The axial variation of
swirl number in logarithm scale is given in Fig. 5(c). The curve
can apparently be split into two straight lines connecting at the
end point of the CRZ. The slopes of the curves are d(log10 S)/dx
= �0.117 and �0.247 in the upstream region occupied by the
CRZ and in the downstream region, respectively. This curve
clearly shows that the variation of flow swirl is subject to
a linear relationship with the axial coordinate and demon-
strates that the behaviors of the CRZ are governed by linear
mechanisms.

It is known that the evolution of the CRZ driven by the
centrifugal force is directly related to the axial variation of flow
swirl.2 Such evolution only appears, however, when the swirl
number exceeds a critical value. In the present configuration,
the variation of flow swirl depends on the swirl number at the
entrance Sin and the swirl Reynolds number Reθ . Sin is deter-
mined by injection angle θin through Eq. (6). Figure 6 shows
the influence of Reynolds number Reθ and injection angle θin

on the profile of the CRZ. At higher Reynolds numbers, the
flow swirl is dissipated more slowly than at lower Reynolds
numbers. Consequently, the CRZ extends farther downstream.
This phenomenon is confirmed by Fig. 6(a), which shows the
profiles of the CRZ at Reθ from 200 to 700 and θin = 20◦. On
the other hand, a larger injection angle has a higher volume
flow rate through the entrance, in the nondimensional form. We
have shown in Eq. (5) that angular momentum carried by a unit
volume of fluid is constant. Therefore, the increased flow rate
of angular momentum due to the increase in injection angle
will result in an axial elongation of the CRZ. This is consistent
with the profiles of CRZ at different θin, shown in Fig. 6(b).
These two figures also show that the position of the separation
point on the head end is not sensitive to the Reynolds num-
ber, and it appears to shift to the axis as the injection angle
increases. In fact, the position of the separation point and the
radial location of the free shear layer are primarily determined
by the radial momentum of the injection flow. Higher radial
momentum at a larger injection angle pushes the separation
point closer to the axis.

Figure 7 shows comparisons of azimuthal and radial
velocity components and pressure on the slip head end at vari-
ous Reynolds numbers and injection angles before the flow
loses stability. In Fig. 7(a), as we observed in Fig. 4, the
azimuthal velocity obeys the conservation of angular momen-
tum in the outer main flow for all cases, uθr = Uθ,inR = 1. In
the central regime, the CRZ takes on a solid-body rotation, for
which the azimuthal velocity changes linearly with the radial
coordinate. The outer main flow and the central recirculating

FIG. 7. Profiles of (a) azimuthal and (b) radial velocity components and (c)
pressure on the slip head end at different θ in and Reθ , in the axisymmetric
flow regime.

flow are connected by a free shear layer, in which the azimuthal
velocity undergoes a sharp change. With the increase in injec-
tion angle, the free shear layer shifts toward the axis and the
rotation speed of the CRZ increases. At any given injection
angle, the higher Reynolds number has a thinner free shear
layer and a smaller angular velocity of the solid-body rotation
of the CRZ.

The radial velocity shown in Fig. 7(b) is not as sensitive to
the Reynolds number in the outer regime. The magnitude |ur | in
the outer main flow is always larger than that in the CRZ. With
the increase in injection angle, |ur | increases in both the outer
main flow and the central recirculating flow. This is natural
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since the velocity is normalized with the tangential velocity at
the entrance.

As shown in Fig. 7(c), the pressure decreases significantly
over the outer flow and the free shear layer from the entrance
and remains largely constant in the central regime. As the free
shear layer shifts to the axis with increasing injection angle,
the pressure in the central regime decreases correspondingly.
For a given injection angle, the higher Reynolds number has
a thinner free shear layer. As a result, the central pressure is
relatively higher.

The column-like or bubble-like CRZ only occurs when
the swirl number S exceeds a critical value Sc and ends at
the position where S becomes smaller than Sc.2 Therefore,
the longitudinal length of the recirculation zone LCRZ largely
reflects the resistance of the flow to swirl dissipation. It is
apparent that the higher Reynolds number allows a lower dis-
sipation rate, and the larger injection angle produces a higher
flow rate of angular momentum, both of which lead to a longer
CRZ.

Figure 8 shows the dependence of the length of CRZ on
the Reynolds number Reθ and the injection angle θin. The
horizontal and vertical axes are both in logarithmic scale.
Figure 8(a) illustrates a linear relationship between LCRZ and
Reθ in logarithm scale, regardless of the injection angle.
Figure 8(b) exhibits another linear relationship between LCRZ

and θin, with roughly the same slope for different Reθ when
θin is not high. At higher injection angles (θin ≥ 45◦), the flow
injected with higher radial momentum is pushed to the outer
region before it reaches the axis. Such motion of the injected

FIG. 8. Dependence of the length of the CRZ on (a) Reynolds number Reθ
and (b) injection angle θin.

FIG. 9. Swirl numbers at the end of the CRZ.

flow forms a wavy pattern and tends to terminate the CRZ
before the swirl number is decreased to the critical value. As
a result, LCRZ is smaller than that predicted by the linear rela-
tionship at a higher injection angle. The linear relationships
in this figure suggest a general expression of LCRZ in terms of
Reθ and θin,

LCRZ = c Rea
θ θ

b
in, (13)

where a, b, and c are constants and depend only on the
geometry of the chamber.

Figure 9 gives the swirl number at the end point of the CRZ
at different injection angles and Reynolds numbers, equivalent
to the critical swirl number Sc in the literature. In this figure,
Send does not remain constant for our cases and shifts in the
range from 0.54 to 0.61, which is close to the experimental
measurement Send = 0.6 of Gupta et al.2 By and large, the
plot displays a decreasing trend of Send with Reθ for all the
injection angles under consideration. At a given Reθ , Send is
slightly larger for higher θin. This phenomenon is caused by
the bouncing effect at higher θin introduced in the discussion
of Fig. 8, which tends to terminate the CRZ before the swirl
number decreases to the value of those at lower θin.

At the downstream end of the CRZ, the swirl number
falls into a narrow range for all injection angles and Reynolds

FIG. 10. Distribution of axial and azimuthal velocities at the end of the CRZ
(normalized by injection radial velocity at entrance). Brown, θ in = 10◦; red,
20◦; green, 30◦; blue, 45◦; dark blue, 55◦. Solid, Reθ = 200; dash, 300;
dashdot, 500; dashdotdot, 700.
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FIG. 11. Variation of swirl number along the axis. The axial coordinate
normalized by the length of central recirculation zone LCRZ.

numbers, which inspires us to ask whether the distributions of
axial and azimuthal velocity components might have similar
features for different flow conditions. Figure 10 shows the pro-
files of axial and azimuthal velocities at the end of the CRZ
at different θin and Reθ . To accommodate the discrepancies of
the volume flow rate caused by the injection angle, the veloc-
ities in this plot are normalized by the radial component of
injection velocity, which is expressed as Ur,in = Uθ,in tan θin.
For both axial and azimuthal velocities, the curves are close
to each other and collapse in places onto a single curve. This
implies that in the basic swirling flow the velocity distribu-
tions might be described by a self-similar expression in terms
of injection swirl number.

The axial variation of swirl number at different injec-
tion angles and Reynolds numbers is shown in Fig. 11. The
axial coordinate is normalized with the length of the CRZ for
each case. It is not surprising that the curves are collapsed
onto a single straight line in the region of the CRZ, except at
the beginning section near the head end. In the downstream
region, these curves remain straight, but the slopes become
different. This deviation is mainly related to the injection
angle. As the injection angle increases from 10◦ to 30◦, the
slope of the curve decreases in the downstream region. This
plot confirms the conclusion that the occurrence of the CRZ
is governed by log-linear mechanisms. Using Figs. 8–11, a
series of linear and log-linear correlations can be developed
to fully describe the characteristics of the swirling flow with
a CRZ. In other words, the behaviors of this kind of flow are
predictable.

B. Columnar central recirculation zone with instability
waves at medium swirl level

At a low injection angle, an axisymmetric CRZ devel-
ops on the axis as a result of high swirl. The free shear
layer between the outer main flow and the central recircu-
lating flow provides the potential for instabilities to grow.
At a low injection angle (θin < 30◦), the free shear layer
is close to the side-wall, which suppresses the development
of instability waves at low Reynolds numbers. With the
increase in θin, the free shear layer shifts toward the axis and
eventually becomes unstable. In the presence of centrifugal and

Coriolis forces, the instabilities involved in the swirling flow
are not simply Kelvin-Helmholtz instabilities. Gallaire and
Chomaz22 summarized four types of instabilities in total: axial
Kelvin-Helmholtz instabilities, azimuthal Kelvin-Helmholtz
instabilities, inertial waves, and centrifugal instabilities. The
Rayleigh criterion states that the centrifugal instability occurs
only if ∂(ruθ )2/∂r < 0.22 In the present configuration, fluid is
injected through an annular entrance on the sidewall and the
flow circulation is lower in the center region, so the centrifu-
gal instability does not occur and only the other three kinds of
instabilities are possible.

In most previous studies of free shear layers,10–14 a Stew-
artson layer was produced by a rotating disk in a container
with different rotation speed. One important conclusion of
those studies is that the onset of the instability waves and
the transition between different wave modes are determined
by the Reynolds number based on the azimuthal velocity dif-
ference across the free shear layer and the thickness of this
layer. In general, a higher Reynolds number leads to a lower
wave number. However, in our model, the radius and thick-
ness of the circular free shear layer, as well as the difference
of azimuthal velocity across the layer, are implicitly dependent
on the injection angle θin and Reynolds number Reθ and can
hardly be quantified. In this section, our focus will be on the
analysis of the flow patterns induced by instability waves and
the dependence of mode selection on those parameters.

In the present configuration, when injection angle θin

increases above a critical value, the flow becomes unstable,
and the circular free shear layer rolls up spontaneously into a
number of discrete vortices aligned evenly along the perimeter
of shear layer. The number of vortices is denoted by an integral
number m, and the instability mode is identified by azimuthal
wave number m. For each flow, only the most unstable wave
mode, as determined by the undisturbed flow condition, can
survive. The numerical simulation predicts the flow evolution
with the most unstable wave mode.

Here we use the flow with m = 4 at θin = 45◦ and Reθ = 500
as an example to discuss the characteristics of the instabilities
developed in the free shear layer. An overview of the flow pat-
terns is given in Fig. 12. The patterns of vorticity magnitude
shown in Fig. 12(a) illustrate four identical spiral vortex cores
created in the upstream region. The vortex cores begin with
a longitudinally aligned straight segment and then develop a
spiral shape at a small distance from the head end. The shape
of the vortex cores implies that the instability waves are ini-
tiated by the disturbances in azimuthal velocity near the head
end and propagate azimuthally along the circle where the free
shear layer is located. In this region, the axial velocity is close
to zero. As the injected flow turns downstream, the difference
in axial velocity between the outer main flow and the central
recirculating flow begins to take effect; this causes the straight
vortex cores to bend and gives rise to the longitudinal com-
ponent of the instability waves. Since the angular velocity of
the CRZ is low in the upstream region and the inertial wave
does not develop, the instability waves are essentially of the
Kelvin-Helmholtz type as the result of the azimuthal and axial
velocity differences across the free shear layer. On the cross
section x = 0.1, four eye-like vortex cores with concentrated
vorticity magnitude can be observed clearly. The contours on
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FIG. 12. Patterns of the columnar CRZ
with instability waves at θ in = 45◦ and
Reθ = 500. Contours at cross section
x = 0.1 and longitudinal central plane
z = 0. (a) Vorticity magnitude, ��~ω��iso
= 10; (b) streamlines; (c) pressure, piso
= �1.85; (d) axial velocity, (ux)iso = 0.

the longitudinal plane show that the strength of the vortex cores
decays gradually as flow travels downstream.

Figure 12(b) shows typical three-dimensional streamlines
around one vortex core and the projected streamlines on the
cross section x = 0.1 and the longitudinal central plane z = 0.
The streamlines are constructed with the velocity components
in the frame rotating with the flow structures, so they coincide
with the trajectories of fluid particles in the rotating frame.

With the development of instability waves, the axisymmetric
flow pattern is disturbed. The streamlines around each vortex
core rotate about the core axis and travel in small-scale spiral
paths along the vortex core in a large-scale spiral shape. On the
planes x = 0.1 and z = 0, the instability waves appear as a series
of eye-like recirculating bubbles in the projected streamlines.
The “eye” centers represent the points where the vortex cores
pass through the planes.
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Because of the small-scale rotation of the fluid particles,
a number of low-pressure cores are created along the vortex
cores, as shown in Fig. 12(c). From the pressure contours on
planes x = 0.1 and z = 0, it can be seen that the pressure mag-
nitude in the low-pressure cores is even lower than on the
axis caused by the swirl motion of the bulk flow. Figure 12(d)
gives the patterns of axial velocity ux. The iso-surfaces at
ux = 0 show the surfaces of the central flow reversal zone
defined as the region in which ux < 0. Because of the insta-
bility waves, some corrugations, whose patterns are consistent
with the shapes of vortex cores, can be observed on the sur-
faces. In the ux contours on the planes x = 0.1 and z = 0, the
flow reversal zone surrounded by a symmetrically deformed
outer zone with ux > 0 can be identified on the axis. In this
situation, the deformed CRZ may no longer be closed, and
mass transfer with the outer flow may take place. This pattern
implies that although the flow loses stability, the basic flow
structure, in which the flow injected into the chamber trav-
els downstream in the outer region and envelops a CRZ, is
preserved.

The surfaces of the central reversal zone, in which ux

< 0, are shown in Fig. 12(d). The upstream region is dom-
inated by the Kelvin-Helmholtz waves, which form a spiral
pattern on the surfaces of the reversal zone. As the flow goes
downstream, the spiral pattern attenuates and transitions to an
axisymmetric wavy pattern, which represents a longitudinal
wave. The reason for this attenuation and change in shape is
that in the course of flow traveling downstream, the flow shear
is weakened through viscous diffusion and dissipation, and this
inhibits the portion of the waves related to Kelvin-Helmholtz

instabilities in the azimuthal and axial directions. We have
shown in Fig. 5 that the central recirculating flow takes on
a solid-body rotation, and the rotation speed increases grad-
ually as the flow travels downstream. The inertial waves are
triggered when the rotation speed meets the criterion for the
development of inertial waves. As a result, the downstream
flow is dominated by longitudinally propagating inertial
waves.

So far, we have identified three different kinds of instabil-
ity waves: azimuthally and longitudinally propagating Kelvin-
Helmholtz waves, and inertial waves. All these waves appear
simultaneously and interact with each other, making it dif-
ficult to determine the features of each individual wave.
Spatial averaging in the azimuthal direction can help us to
separate the azimuthally propagating waves from their lon-
gitudinal counterpart. Figure 13 presents the flow patterns
based on the azimuthally averaged flow field. The azimuthally
averaged velocities are denoted by 〈u〉θ . The longitudinally
aligned recirculation bubbles shown by the streamlines in
Fig. 13(a), as well as the modulated patterns in the con-
tours of axial and swirl velocities in Figs. 13(b) and 13(c),
clearly demonstrate the development of the longitudinally
propagating waves. The streamline patterns indicate that in
the upstream region small bubbles deviate from the axis and
align roughly in the layer where the free shear layer is located.
The bubbles gradually converge to the axis as the flow trav-
els downstream. The longitudinal waves include not only
the inertial waves caused by the solid-body rotation of the
central recirculating flow in the downstream region but also
the longitudinally propagating Kelvin-Helmholtz instability

FIG. 13. Flow patterns based on the
azimuthally averaged flow field at θ in
= 45◦ and Reθ = 500. (a) Projected
streamlines on the x-y plane; (b) con-
tours of axial velocity 〈ux〉θ on the
x-y plane; (c) contours of azimuthal
velocity 〈uθ 〉θ on the x-y plane; (d)
contours of vorticity magnitude of the
azimuthally averaged flow field; (e) pro-
file of azimuthal velocity on the slip
head end.
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FIG. 14. Patterns of perturbation ve-
locity components at θ in = 45◦ and
Reθ = 500. Left column: iso-surfaces of
perturbation velocity components; right
three columns: contours of perturbation
velocity components at cross sections
x = 0.1, 0.5, and 1.0. (a) ux � 〈ux〉θ ;
(b) ur � 〈ur〉θ ; (c) uθ � 〈uθ 〉θ .

waves developing in the free shear layer. As discussed with
respect to Figs. 3 and 5, in the upstream region, the free shear
layer is stronger and the central flow rotates more slowly, so
the flow is dominated by Kelvin-Helmholtz instabilities. In
the downstream region, the flow shear due to axial velocity
difference has been mostly dissipated and the central flow
rotates faster. These two issues cause the transition from
Kelvin-Helmholtz waves to inertial waves in the downstream
region.

The contours of vorticity magnitude based on the
azimuthally averaged flow field are shown in Fig. 13(d). In
the upstream region, the free shear layer, which contributes to
the longitudinally propagating Kelvin-Helmholtz waves, can
be clearly identified. In the downstream region, a series of
oval blocks with higher vorticity magnitude are aligned peri-
odically on the axis. The convergence of vorticity in the ovals is
caused by the flow recirculation of inertial waves. Figure 13(e)
shows the distribution of the azimuthally averaged azimuthal
velocity on the slip head end. The azimuthal velocity of the
outer flow above the free shear layer obeys the conservation
of angular momentum, and the central recirculating flow con-
tinues in solid-body rotation. The free shear layer based on
the azimuthally averaged flow field is thicker than that of the
axisymmetric base flow under the same conditions before the
instabilities occur.

The patterns of the perturbation velocity components u′x,
u′r , and u′θ are shown in Fig. 14. The perturbation velocities
are obtained by subtracting the azimuthally averaged velocities
from the instantaneous velocities, u′ = u � 〈u〉θ . The contours
on cross sections x = 0.1, 0.5, and 1.0 are compared. For the
present geometry, the entrance width is d = 0.2, so the cross
section x = 0.1 is at the halfway point of the entrance, and
the other two are downstream. Figure 14(a) shows clearly that
the magnitude of u′x at x = 0.5 and 1.0 is larger than that at
x = 0.1. This is because that the injected flow has not fully
developed at x = 0.1. With the development of azimuthal
waves near the entrance, however, u′r and u′θ grow from the
slip head end and decay further downstream, as shown in
Figs. 14(b) and 14(c).

In order to find the temporal characteristics of the insta-
bility waves, we place probes in the flow to record the time
variations of the flow variables. Figure 15 shows the posi-
tions of the probes and the variations of axial velocity with
time at these points. Point 1 is located in the free shear layer,
where the azimuthal instability waves develop. Points 2 and
3 are on the axis in the upstream region and can be used
to record flow variation due to longitudinally propagating
Kelvin-Helmholtz instability waves. Points 4, 5, and 6 are
on the axis in the downstream region to record flow varia-
tion due to inertial waves. Periodic variations of axial velocity
are clearly observed at these points. The wave frequency at
probe 1 is much higher than that at the other points. How-
ever, under the current conditions, the flow in the upstream
region is dominated by azimuthal wave m = 4, so the wave fre-
quency is four times the frequency given by the other probes.
At points 2-6, the curves demonstrate an approximately uni-
form frequency, which means that although the longitudinal

FIG. 15. Temporal variations of axial velocity at different points in the flow
field at θ in = 45◦ and Reθ = 500.
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waves in the upstream and downstream regions are of differ-
ent types, the interaction between them unifies the wave fre-
quency. In our simulation, the frequencies of the azimuthal and
longitudinal waves are fairly close—fθ = 0.482 and fx = 0.434,
respectively.

The onset of instabilities and mode selection of the
azimuthal waves are determined by the injection angle and
Reynolds number. The former has two effects. First, the radius
of the circular free shear depends on the injection angle. A
higher injection angle gives a larger radial component of injec-
tion velocity, which pushes the free shear layer closer to the
axis. A decrease in the perimeter of the free shear layer will
lead to a reduction of the azimuthal wave number. Second,
the azimuthal velocities on both sides of the free shear layer
are determined by the injection angle. In the flow outside
the free shear layer, the azimuthal velocity satisfies the con-
servation of angular momentum. As a result, the azimuthal
velocity at the outer border of the free shear layer is inversely
proportional to the radial coordinate, and a higher injection
angle will result in an increase in the azimuthal velocity at
the outer border of the free shear layer. Correspondingly, the
speed of the solid-body rotation of the central recirculating

flow increases. The immediate consequence of the increased
solid-body rotation speed is that the Coriolis force effect is
strengthened, and the inertial waves develop more easily. For
this reason, the flows at higher injection angles are more com-
plex. In the present study, the chamber radius is used as the
characteristic length to define the Reynolds number (note that
some studies use the thickness of the free shear layer11–14).
The influence of the Reynolds number lies in the thickness
of the free shear layer and the dissipation rates of flow shear
strength and swirl concentration. A higher Reynolds number
leads to a thinner shear layer, which facilitates the transi-
tion from a lower wave number to a higher wave number.
The trend is therefore different from those of the previous
studies.

Figures 16 and 17 summarize the dependence of the
azimuthal wave mode on the injection angle and Reynolds
number, as shown by the vorticity magnitude. Except for the
flows at low injection angles and high Reynolds numbers,
which will be discussed in Sec. IV C, these two figures cover
fairly broad ranges of injection angles (30◦–75◦) and Reynolds
numbers (200–2000) and include almost all the wave modes
appearing in the laminar flow regime.

FIG. 16. Contours of vorticity mag-
nitude at x = 0.1 for the columnar
CRZ with instability waves at different
Reynolds numbers and injection angles.
Color scale is different for each figure.
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FIG. 17. Iso-surfaces of vorticity mag-
nitude for the columnar CRZ with
instability waves at different Reynolds
numbers and injection angles. The iso-
surface level is different for each figure.

Figure 16 shows the contours of vorticity magnitude at
cross section x = 0.1. They are organized by the Reynolds
number (rows) and injection angle (columns). To show the
vortex patterns clearly, the color scales are different for every
figure. The circular ring patterns at low Reynolds numbers
and low injection angles show the axisymmetric free shear
layer in the basic flow without instability waves. The occur-
rence and behavior of the instability waves in the free shear
layer are determined by both the injection angle and Reynolds
number.

At any given injection angle θin, the basic flow becomes
unstable at a critical Reynolds number Rec. For example, at
θin = 30◦, the circular free shear layer breaks up into mode
m = 4 at Reθ >Rec, where Rec is between 500 and 700. The crit-
ical Reynolds number decreases with the increase in injection
angle. As θin increases up to 65◦, the critical Reynolds num-
ber decreases below 200. The higher injection angle makes
the flow more prone to lose stability. After the instabilities
arise, the wave mode does not show strong dependence on
the Reynolds number in the range of Re considered in this
study. The exception to this trend appears at θin = 75◦. In this
case, as the Reynolds number increases from 300 to 500, the
mode number increases from 1 to 2. In our simulations with
θin < 75◦, this kind of mode transition caused by the Reynolds
number was not observed. The vortex patterns are more com-
plex at higher Reθ . θin = 45◦ and θin = 55◦; when Re increases
from 700 to 2000, the solid vortex cores expand and roll up and
finally evolve into a hollow tabular structure. At θin = 65◦ and
75◦, the injection angle is so high that the instability waves
are squeezed to the center region and rotate at high speed.
At Reθ = 2000, the smooth vortex structures are lost and the
small-scale chaotic disturbances appear. The flow has entered
the turbulent state. Comparison of these patterns confirms that
the injection angle influences the wave mode by varying the
perimeter of the free shear layer and the azimuthal velocity
in the layer. When the injection angle increases from 30◦ to
75◦, the perimeter of the circle along which the vortex cores
move decreases, and the wave number decreases from m = 4
to 2. At the same time, with an increase in azimuthal veloc-
ity, the flow becomes more and more chaotic. In the range of

parameters considered in this study, the injection angle plays a
more important role than the Reynolds number in determining
the wave mode.

The corresponding three-dimensional iso-surfaces of vor-
ticity magnitude at different injection angles and Reynolds
numbers are shown in Fig. 17. With the aim of demonstrating
the vortex topologies, the levels of the iso-surfaces are adjusted
to an appropriate value for each flow; the levels are different
for each case. At a lower Reynolds number (Reθ ≤ 1000),
the vortex cores stay smooth and clean. At Reθ = 2000, the
smooth vortex structures burst into fine structures when the
flow travels about one-chamber-diameter length downstream,
but the large scale spiral patterns of the fine structures can still
be identified.

The injection angle and Reynolds number also influence
the behaviors of the longitudinal waves. Generally, the increase
in Reynolds number makes the free shear layer unstable and
facilitates the development of longitudinal Kelvin-Helmholtz
instability waves. On the other hand, the increase in injec-
tion angle not only decreases the radius of the CRZ but also
increases the rotation speed of the CRZ. Both promote the
development of longitudinal inertial waves.

C. Columnar central recirculation zone with instability
waves at high swirl level and high Reynolds number

For a flow with a low injection angle, that is, high swirl
level, the sidewall suppresses the instability waves and the
flow remains axisymmetric when the Reynolds number is not
large enough. When Reθ goes beyond a critical point, the flow
becomes unstable and instability waves develop. This kind of
instability wave is different from those discussed in Sec. IV B,
and the mechanisms are more complicated.

Figure 18 shows the instantaneous flow patterns of the
instability waves at θin = 20◦ and Reθ = 1000. The free shear
layer breaks up into six or seven discrete vortex cores, which
are aligned on the edges of a triangle on the head end. Even
after an extended long computational time, the flow does not
reach a quasi-steady state. The vortex cores shift irregularly
on the triangle at a relatively low speed, and the shape of each
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FIG. 18. Flow patterns of instability
waves at high swirl level (θ in = 20◦ and
Reθ = 1000). Cross section at x = 0.1. (a)
Projected streamlines; (b) contours of
axial velocity; (c) contours of pressure;
(d) contours of vorticity magnitude; (e)
iso-surfaces of vorticity magnitude.

vortex core changes with time. The large-scale triangle on
which the vortex cores are located rotates about the axis at
a fairly constant speed. Comparing with the instability waves
discussed in Sec. IV B, it is apparent that the Kelvin-Helmholtz
instability waves developing in the free shear layer are influ-
enced by other effects at high swirl levels and high Reynolds
numbers.

The azimuthally averaged flow patterns are given in
Fig. 19. Unlike at low swirl level, neither the projected stream-
lines nor the contours of axial and azimuthal velocities show
any obvious longitudinal waves. The streamlines are only
slightly disturbed downstream. One major difference, how-
ever, is that the upstream traveling flow in the CRZ deviates
from the axis near the head end and creates a smaller CRZ
with the opposite recirculation direction. We have shown in
Sec. IV A that the CRZ rotates faster in the downstream
region. As the flow in the CRZ travels back to the upstream
region, the decrease in azimuthal velocity generates a nega-
tive pressure gradient on the axis, which forces the flow to
deviate from the axis and creates a recirculation zone when
the Reynolds number is high enough. In our simulations, the
smaller CRZ appears at about Reθ = 900. The critical value
also depends, however, on the injection angle. The profile of
azimuthal velocity on the slip head end shown in Fig. 19(d)

indicates that the smaller recirculation zone takes on a
solid-body rotation. It is very likely that the triangular dis-
tribution of the vortex cores shown in Fig. 18 is caused by
the generation of the smaller CRZ, but at present, we have no
proof supporting this hypothesis.

The distributions of perturbation velocity components
u′ = u � 〈u〉θ at different cross sections are given in Fig. 20.
These contours clearly show that in the upstream region
(x = 0.1, 0.5 and 1.0) m = 6 is the dominant wave mode in
the outer layer, but in the central region, m = 3 is dominant. In
the downstream region (x = 2.0), only the m = 3 mode can be
observed. According to the dependence of the wave mode on
the injection angle shown in Figs. 16 and 17, it is reasonable
for the instability waves to be dominated by m = 6 in the outer
region at θin = 20◦. In the central and downstream regions,
although the mechanisms are as yet unidentified, the m = 3
mode becomes dominant.

Figure 21 shows comparisons of vortex patterns at θin

= 10◦ and 20◦ with Reynolds numbers ranging from 700 to
3000. The radius of the free shear layer is larger at θin =
10◦ than at θin = 20◦. At θin = 10◦, when Reθ increases
from 1000 to 1500, the axisymmetric circular shear layer
breaks up into eight identical vortex cores distributed uni-
formly on the periphery of a circle. When Reθ increases to

FIG. 19. Flow patterns based on the
azimuthally averaged flow field at θ in
= 20◦ and Reθ = 1000. (a) Projected
streamlines on the x-y plane; (b) con-
tours of axial velocity 〈ux〉θ on the x-y
plane; (c) contours of azimuthal veloc-
ity 〈uθ 〉θ on the x-y plane; (d) profile of
azimuthal velocity on the slip head end.



013602-15 Y. Wang and V. Yang Phys. Fluids 30, 013602 (2018)

FIG. 20. Patterns of perturbation
velocity components in a cylinder with
the slip head end at θ in = 20◦ and Reθ
= 1000. (a) ux � 〈ux〉θ ; (b) ur � 〈ur〉θ ;
(c) uθ � 〈uθ 〉θ .

2000 and above, these vortex cores are sheared into tapes and
rearranged along the edges of a pentagon. The pentagon rotates
about the axis with a constant speed, and the shapes of the
vortex cores change with time in a random manner. At θin

= 20◦, the free shear layer breaks up into six vortex cores
at about Reθ = 700. Further increase in Reθ results in the
alignment of the vortex cores along the edges of a triangle. It
is apparent that the edge number of the polygon, the wave mode
in the central region, decreases with the increase in injection
angle.

D. Summary of flow states and regime diagram

So far, we have identified three types of flow patterns, that
is, the flow with an axisymmetric central recirculating zone, the
flow with symmetric instability waves in the free shear layer
enclosing the CRZ, and the flow with asymmetric instability
waves aligned along the edges of a polygon. The occurrence
of each kind of the flow pattern is determined by the injection
angle θin and Reynolds number Reθ .

Figure 22 shows the profiles of azimuthal velocity on the
slip head end of all the cases considered in this study. The
solid curves represent the cases with basic flows in which an

axisymmetric CRZ is created, and the dashed curves are for
the cases in which instability waves developed. The dashed
curves are based on the azimuthally averaged flow field. This
figure demonstrates some important facts. The radius of the
free shear layer is primarily determined by the injection angle,
and a higher injection angle leads to a smaller radius of the free
shear layer. In the outer main flow, the angular momentum is
well conserved, and the azimuthal velocity is described by the
inverse of the radial coordinate. Inside the free shear layer,
the central flow takes on the solid-body rotation. The angu-
lar velocity of the central zone increases with an increase in
injection angle and decreases with an increase in Reynolds
number. The outer and central flows are connected by the
free shear layer, which is characterized by a sharp change in
azimuthal velocity. In basic axisymmetric flows, the thickness
of the free shear layer decreases with an increase in Reynolds
number. For flows with instability waves, however, the pro-
files of azimuthally averaged azimuthal velocity can hardly
give an accurate estimation of the thickness of the free shear
layer. At the same time, other uncertainties are involved at
high injection angles and high Reynolds numbers. These issues
mean that the free shear layer thickness cannot be measured
accurately.

FIG. 21. Contours of vorticity magni-
tude at x = 0.1 for flow instability at
a high swirl level. The color scale is
different for each figure.
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FIG. 22. Profiles of azimuthal velocity on the slip head end at different θ in
and Reθ . Dashed curves based on the azimuthally averaged flow field for cases
with instability waves.

The injection angle θin plays an important role in deter-
mining the spatial and temporal features of the instability
waves on the surface of the CRZ. Figure 23 shows the variation
of the radius of the azimuthal wave train on the head end with
the injection angle and the variation of temporal periods of
the azimuthal and axial waves with the radius of the azimuthal
wave train and the injection angle. (The radius of the azimuthal
wave train is also the radius of the CRZ of the azimuthally
averaged flow, so it is denoted with RCRZ.) The Reynolds
number ranges from 200 to 2000. In this figure, the subscript
θ indicates the variables related to the azimuthal waves, and
subscript x indicates the variables related to the longitudinal
waves.

Figures 23(a) and 23(b) show the dependence of RCRZ on
θin at different Reynolds numbers. In Fig. 23(a), the vertical
coordinate RCRZ is in logarithmic scale, and the horizontal
coordinate θin is in linear scale. In Fig. 23(b), the horizontal
coordinate θin is logarithmic scale, and the vertical coordinate
RCRZ is linear scale. The numerical results are represented by
open symbols. The Reynolds number Reθ does not appear to
exhibit influence on RCRZ in the range considered in this study.
The variation of RCRZ suggests that the dependence of RCRZ

on θin separates into two regimes according to the level of
θin. When θin < 45◦, a roughly linear relationship is observed
between log(RCRZ ) and θin, yet when θin > 45◦, a roughly
linear relationship appears between RCRZ and log(θin). The
relationship can be expressed in the form

log RCRZ = aθin + b θin < 45◦, (14)

RCRZ = c log θin + d θin > 45◦. (15)

Taking into account the restrictions RCRZ = R = 1 at θin = 0◦ and
RCRZ = 0 at θin = 90◦, we develop two log-linear correlations
between RCRZ and θin for the present configuration, using the
least square method,

log RCRZ = −0.023 · θin θin < 45◦, (16)

RCRZ = −0.530 · (log θin − log 90) θin > 45◦. (17)

In Fig. 23(c), the temporal periods of the azimuthal and
longitudinal waves (T θ and T x) versus the radius of the
azimuthal wave train RCRZ at x = 0 are examined. The numer-
ical results are represented by open symbols for azimuthal
waves and solid symbols for longitudinal waves. Just as RCRZ

versus θin, T θ , and T x are not much influenced by the Reynolds

FIG. 23. Temporal and spatial features
of azimuthal and longitudinal waves. (a)
Radius of azimuthal wave trains on head
end versus injection angle, RCRZ (verti-
cal coordinate) in logarithm scale; (b)
radius of azimuthal wave trains on head
end versus injection angle, θ in (horizon-
tal coordinate) in logarithm scale; (c)
time periods of azimuthal and longitu-
dinal waves versus radius of azimuthal
wave train; (d) time periods of azimuthal
and longitudinal waves versus injection
angle θ in.
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number. For each individual case, the period of the azimuthal
waves T θ is almost identical to that of the longitudinal waves
T x, as a result of the interaction between the two types of
waves. The azimuthal wave is primarily caused by the Kelvin-
Helmholtz instability due to the velocity difference. Its period
can be roughly estimated by ignoring the thickness of the free
shear layer and the velocity of the central flow,

Tθ =
2πRCRZ

Uwave
. (18)

The wave velocity is taken to be the average velocity of the
outer flow and the central flow,

Uwave =
1
2

(Uout + Uctr) ≈
1
2

(
Uθ,inR

RCRZ
+ 0

)
. (19)

In the nondimensional form, Uθ,in = R = 1. Substitution of
Eq. (19) into Eq. (18) gives the relationship between T θ and
RCRZ ,

Tθ = 4πR2
CRZ . (20)

The period of the azimuthal wave estimated by this model is
represented by the solid curve in the figure. The model pre-
diction agrees largely well with the numerical result shown by
the open and solid symbols. The discrepancy at larger RCRZ

(>0.4) can be attributed to the neglect of the azimuthal velocity
of the central recirculating flow, which makes the azimuthal
wave speed smaller and the temporal period larger. At smaller
RCRZ (<0.4), the neglect of the free shear layer thickness takes
effect, which makes the azimuthal wave speed of the model
prediction larger and the temporal period smaller.

The dependence of T θ and T x on θin is shown in
Fig. 23(d). Using the correlations between RCRZ and θin given
by Eqs. (14)–(17), and the simplified model for T θ and RCRZ

given by Eq. (20), the relationship between the wave period
and injection angle can be established analytically, as shown
by solid curves in the figure.

Figure 24 gives a regime diagram summarizing the flow
states in the space of θin and Reθ . In this diagram, “©” stands
for the basic stable state without instability waves. The uncir-
cled numbers represent the state in which the free shear layer
breaks up into discrete vortex cores with instability waves,
where the number indicates the wave mode. The circled num-
bers describe the state in which the discrete vortex cores are
rearranged and aligned along the edges of a polygon, indicat-
ing the number of edges of the polygon. Several observations
are noted. For each injection angle, the flow is characterized by
a basic axisymmetric pattern (“©”) at lower Reynolds num-
bers. When the Reynolds number increases beyond a critical
value, instability waves develop in the free shear layer. The
critical Reynolds number decreases with increasing injection
angle, that is, higher injection angles make it is easier for the
flow to become unstable to disturbances. On the other hand,
a critical injection angle exists for each Reynolds number for
the generation of flow instabilities. The increase in injection
angle leads to a decrease in the perimeter of the free shear
layer. As a result, the mode number decreases. In the range
of parameters considered in this study, the Reynolds number
is not the major factor influencing wave mode selection. The
Reynolds number effect only occurs at θin = 75◦, where the
wave mode increases from 1 to 2 when Reθ increases from

FIG. 24. Diagram of flow regimes. “©”—basic flow without instabil-
ity waves; uncircled numbers—mode number of instability waves; circled
numbers—the number of edges of polygon along which instability waves are
aligned.

300 to 500. In addition, at low injection angles, an increase
in Reynolds number triggers the redistribution of the vortex
cores along the edges of a polygon.

E. Linear analysis of flow instability

In this section, a linear analysis of the azimuthal shear
instability is performed to provide more insight into the occur-
rence and mode selection of the instability waves. In the
present study, the instabilities originate near the head end,
where the flow injected into the chamber drives the central
flow to swirl through a free shear layer. If the thickness of the
free shear layer is ignored, the present flow can be consid-
ered as a special case with zero axial velocity of the screened
Rankine vortex, with an added plug flow, as investigated by
Gallaire and Chomaz.22 In their work, the effect of azimuthal
shear on the stability of azimuthal wave number m was ana-
lyzed extensively with asymptotic expansions and numerical
computations of the dispersion relation. They found that the
azimuthal shear destabilizes the azimuthal wave mode |m| ≥ 2,
and the axial shear and centrifugal instability are active for
all m. The azimuthal Kelvin-Helmholtz instability interacts
with its counterpart in the axial direction, centrifugal instabil-
ity due to higher circulation in the central region, and inertial
waves due to solid-body rotation of the central flow. The resul-
tant model constitutes the basic mechanisms of instabilities in
swirling flows. In the present study, the circulation Γ(=uθ2πr)
of the outer main flow is far greater than that of the cen-
tral flow in the upstream region. The centrifugal instability
thus does not occur. The low azimuthal velocity also pre-
vents the development of inertial waves in the central region.
Therefore, the upstream flow is dominated by the Kelvin-
Helmholtz instability due to azimuthal shear when the flow
loses stability. The centrifugal and Coriolis forces also play a
role.10

In real flows, the finite thickness of the free shear
layer must be taken into account. Experimental studies have
shown that the azimuthal wave number m is roughly propor-
tional to the ratio of the circular shear layer diameter to its
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thickness.23,24 This is consistent with the mode variation
shown in Fig. 16 and the azimuthal velocity profiles shown
in Fig. 22.

The instabilities in the present study are triggered by the
azimuthal shear near the head end, where the axial velocity has
not developed in the flow, so the instabilities reduce to two-
dimensionality and only propagate azimuthally in the upstream
region. As shown in Fig. 22, the azimuthal velocity profiles of
the undisturbed base flow can be simplified as a continuous
piecewise distribution illustrated in Fig. 25, where r0 is the
radius of the circular interface between the outer main flow
and the central flow, and δ is the thickness of the free shear
layer. In the outer main flow, the azimuthal velocity obeys
the conservation of angular momentum as uθ = uθ,inR/r =
Ω2(r0 + δ/2)2/r, where Ω2 = uθ,inR/(r0 + δ/2)2 is the angular
velocity at the outer boundary of the free shear layer. The
central recirculating flow takes on solid-body rotation, and the
azimuthal velocity varies linearly with the radial coordinate
as uθ = Ω1r, where Ω1 is the constant angular velocity of the
central flow. Across the free shear layer, the azimuthal velocity

FIG. 25. Simplified piecewise profile of azimuthal velocity.

decreases linearly from the lower boundary of the outer main
flow to the upper boundary of the central flow. The undisturbed
azimuthal velocity in the upstream region is given as

uθ = Ω2
(r0 + δ/2)2

r
(r > r0 + δ/2) , (21)

uθ = Ω1 (r0 − δ/2) +
Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)

δ
[r − (r0 − δ/2)] (r0 − δ/2 < r < r0 + δ/2), (22)

uθ = Ω1r (r < r0 − δ/2) . (23)

We seek a solution of perturbation of the type

u′θ = Uθ (r) ei(mθ/2π−ωt), (24)

u′r = Ur (r) ei(mθ/2π−ωt), (25)

where Uθ (r) and Ur(r) are the amplitude of velocity perturba-
tion in the azimuthal and radial directions andω is the complex
wave frequency. The positive imaginary part ofω is a symptom
of the unbounded growth of instability. The equivalent wave
number in the curvilinear coordinate along the circular central
line of the instability wave is

k =
m

2πr0
. (26)

Considering the squeezing effect on the equivalent wave num-
ber k of the curvature of the circular shear layer, k is modified
as

k =
m

2π (r0 − fcorδ/2)
, (27)

where fcor is the correction factor. We choose fcor = 0.6 in this
analysis.

The present numerical results have shown that in the
low Reynolds number range (Re < 1000) the instability is
suppressed by the injected flow when the free shear layer is

close to the inlet at low injection angles (θin = 10◦ and 20◦).
Here, the emphasis is placed on the mechanisms of occurrence
and mode selection of instability waves, so we ignore the sup-
pression effect of the injected flow as well as the constraint
on the chamber axis and assume that the amplitude of radial
velocity perturbation has the following form:

Ur = A+e−k(r−r0) (r > r0 + δ/2) , (28)

Ur = A0e−k(r−r0) + B0e+k(r−r0) (r0 − δ/2 < r < r0 + δ/2) ,

(29)

Ur = B−e+k(r−r0) (r < r0 − δ/2) . (30)

At the outer and inner boundaries of the free shear layer, the
continuity of Ur is satisfied, so we have

A+e−kδ/2 = A0e−kδ/2 + B0e+kδ/2, (31)

B−e−kδ/2 = A0e+kδ/2 + B0e−kδ/2. (32)

For a simple analysis, we ignore the centrifugal effect and the
curvature of the shear layer and utilize the continuous relation
for the rectilinear wave proposed by Chandrasekhar25 at the
outer and inner boundaries of the circular free shear layer,

−
A0

B0
e−kδ =

Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

+Ω2 − 2 [ω + kΩ2 (r0 + δ/2)]

Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

+Ω2

, (33)
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−
B0

A0
e−kδ =

Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

−Ω1 + 2 [ω + kΩ1 (r0 − δ/2)]

Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

−Ω1

. (34)

Eliminating A0/B0, we obtain the dispersion relation

e−2kδ =




Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

+Ω2 − 2 [ω + kΩ2 (r0 + δ/2)]

Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

+Ω2




×




Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

−Ω1 + 2 [ω + kΩ1 (r0 − δ/2)]

Ω2 (r0 + δ/2) −Ω1 (r0 − δ/2)
δ

−Ω1




. (35)

The wave frequencyω can be obtained by solving this equation
for each equivalent wave number k(=m/2πr0). If ω has a pos-
itive imaginary component, the flow is unstable. The growth
rate of an unstable instability reads as

σ = ωi, (36)

where ωi is the positive imaginary part of ω.
As typical cases, the flows for θin = 45◦ and 55◦ at Reθ =

500 are considered here. According to the azimuthal velocity
profiles of the azimuthally averaged flow field shown in Fig. 22,
the parameters of the simplified piecewise base flow are given
in Table II. Through Eqs. (35) and (36), the growth rateσ for
each unstable azimuthal wave mode m can be acquired. The
dependence of σ on m for these two cases is shown in Fig. 26.
The maximum σ at integral m (indicated by solid dots in the
figure) shows that m = 4 and 3 are the most unstable modes

TABLE II. Parameters of the piecewise azimuthal velocity profile at θ in =
45◦ and 55◦ and Reθ = 500.

θ in (deg) r0 d Ω1 Ω2

45 0.34 0.20 0.41 3.43
55 0.28 0.18 0.41 4.73

FIG. 26. Growth rate of an instability as a function of azimuthal wave number
at θ in = 45◦ and 55◦, and Reθ = 500. Solid dots indicate the most unstable
azimuthal wave mode.

for θin = 45◦ and 55◦, respectively. This is consistent with the
numerical results in terms of mode selection shown in Figs. 16
and 17.

In addition to predicting the most unstable mode, the
intrinsic properties of the dispersion relation [Eq. (35)] con-
firm the observation from the numerical simulation that the
wave number m is primarily determined by the radius r0 and
thickness δ of the circular free shear layer, which are functions
of injection angle θin and Reynolds number Reθ . Due to the
limitation of the paper length, a detailed discussion will not be
presented here.

As the important nature of instabilities in the swirling flow,
the absolute and convective characteristics have been broadly
investigated.26,27 For the simplest inviscid parallel shear flow,
Huerre and Monkewitz28 found that the flow is convectively
unstable when the velocity ratio |U1 �U2|/|U1 + U2| is smaller
than a critical value. Otherwise, the flow is absolutely unsta-
ble. The flow in the present geometry is much more complex,
and analysis of this type is beyond the scope of the present
paper. That investigation will be carried out in the future
work.

V. CONCLUSIONS

Focusing on instability waves, we attempt to construct a
unified theory to connect different flow states over a broad
range of flow parameters in the swirling flow. As the first step,
we provide a comprehensive analysis of the flow characteris-
tics under different conditions in a cylindrical chamber with a
slip head end.

At a high swirl level, that is, at a low injection angle,
the flow is characterized by an axisymmetric central recircu-
lation zone. The motion of the central flow is driven by the
outer main flow through a free shear layer enclosing the cen-
tral recirculation zone. The outer flow obeys the conservation
of angular momentum, and the central flow takes on a solid-
body rotation. The radius of the free shear layer is primarily
determined by the injection angle. A higher injection angle
pushes the shear layer closer to the axis. Our results confirm
that the central recirculation zone only appears when the swirl
number exceeds a critical value. We found that the longitu-
dinal dimension of the central recirculation zone is linearly
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dependent on the Reynolds number and injection angle in log-
arithm scale, which suggests the expression LCRZ = c Rea

θ θ
b
in

to describe the length. In addition, we found that the logarithm
of the swirl number satisfies a segmentally linear relationship
with the axial coordinate. In the upstream section of the swirler,
with the central recirculation zone, all the curves of the swirl
number are collapsed into a single curve with the axial coordi-
nate normalized with LCRZ . These linear relationships clearly
demonstrate that the flow with the central recirculation zone is
a linear phenomenon, and all the flow behaviors are predictable
with simple expressions.

When the injection angle increases up to a certain value,
the basic flow loses stability and instability waves develop in
the free shear layer and the central flow. In the present study,
we identify three kinds of instability waves: azimuthal and
longitudinal Kelvin-Helmholtz waves originating in velocity
change across the free shear layer and inertial waves from the
solid-body rotation of the central flow. In the range of injec-
tion angle and Reynolds number considered in this study, the
azimuthal wave mode is primarily determined by the injection
angle. An increase in injection angle leads to a decrease in
the perimeter of the free shear layer, which causes a reduc-
tion in mode number. Compared with the injection angle, the
Reynolds number plays a minor role in mode selection. The
longitudinal waves contain both Kelvin-Helmholtz waves and
inertial waves. The Kelvin-Helmholtz waves are dominant in
the free shear layer near the head end, whereas the inertial
waves are generally dominant in the downstream section of
the central recirculation zone, where the azimuthal velocity is
sufficiently large. Our results show that the time periods or
frequencies of the azimuthal waves are close to those of the
longitudinal waves. An exponential relationship between the
time periods of the waves and the injection angles is obtained
in the simulations.

At a high swirl level and high Reynolds number, dis-
crete vortex cores formed by the instability waves are aligned
on the edges of a polygon. It is possible that this is due to
the formation of a second central recirculation zone on the
axis due to high swirl in the upstream-traveling flow on the
axis.

In addition to the numerical simulation, a linear analysis
of azimuthal instabilities in the upstream section is carried out,
taking into account the variation of azimuthal velocity in the
outer main flow and the central recirculating flow, as well as
the transition through the free shear layer with finite thickness.
The most unstable wave modes predicted by the linear analy-
sis agree well with those from the numerical simulation; the
mode selection mechanisms identified through the numerical
simulation are confirmed.
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